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This paper examines the standard symmetric two-periodR&Dmodel

with a deterministic one-way spillover structure: know-how flows

only from the high R&D firm to the lowR&D firm (but not vice versa).

Though firms are ex ante identical, one obtains a unique asymmetric

equilibrium (pair) in R&D investments, leading to interfirm hetero-

geneity in the industry. R&D cooperation by means of a joint lab is

considered and compared to the non cooperative solution. The main

part of the paper provides a second-best welfare analysis in which

we show that the joint lab yields a socially optimal R&D level sub-

ject to an equal treatment (of firms) constraint, which also coincides

with the noncooperative solution in the absence of spillovers. We

also investigate the welfare costs of this equal treatment constraint

and find that they can be quite significant.

1 INTRODUCTION

In the context of nontournament models of research and development (henceforth, R&D) in which firms engage in

cost-reducing innovation and then compete à laCournot in the product market, it is widely recognized that exogenous

knowledge spillovers create distortions in R&D investment decisions (see, e.g., the pioneering study by Spence, 1984).

Alongwith other distortions associatedwith suchmodels, such as imperfect competition, these spillovers cause awell-

known significantwedge between the private and the public returns to R&D, leading to insufficient levels of R&Dbeing

supplied from the perspective of social optimality (see, e.g., Bernstein &Nadiri, 1988).

The bulk of the extant literature on imperfectly appropriable R&D focuses on deterministic multidirectional

spillovers.1 A fixed proportion (given by the spillover parameter) of every firm's R&D effort or benefit flows freely to

the rivals. As argued by Kamien, Muller, and Zang(1992), such a spillover process is appropriate if the associated R&D

process in the extant literature is implicitly assumed to be a multidimensional heuristic rather than a one-dimensional

algorithmic process. Thus, it necessarily involves trial and error on the part of the firms, which follow potentially differ-

ent sets of research paths and or approaches.

An exception to the deterministicmultidirectional spillovers is proposed in the two studies byAmir (2000) andAmir

andWooders (2000), henceforth AW. These authors consider instead a stochastic directed spillover process whereby

1 A small selection of papers includes Ruff (1969), Katz (1986), d'Aspremont and Jacquemin (1988, 1990), Kamien, Muller, and Zang (1992), Amir (2000), and

Amir, Evstigneev, andWooders (2003), amongmany others.
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know-how may flow only from the more R&D-intensive firm to its rival.2 In their model, spillovers are stochastic and

admit only extreme realizations—either full or no spillovers occur with a given probability.3 The latter probability is

itself defined as the spillover parameter. As argued by AW, the idea underlying the assumption of a unidirectional

spillover process is that it is a better approximation for the potential leakages that occur when the R&D process is

either one-dimensional, that is, there is a single research path to achieve unit cost reductions, or multidimensional,

in which case this spillover structure suggests that there is a well defined natural path to follow. In this context, the

spillover parametermay be interpreted as being related to the length of patent protection, but also to ameasure of the

imitation lag.

The purpose of the present paper is to consider a deterministic one-way spillover process, which constitutes the

certainty-equivalent version of AW's model. In other words, a fraction of the R&D lead of the leader (i.e., of the R&D

differential between the two firms) flows to its rival with certainty. That fraction is itself defined as the spillover param-

eter, and ranges from zero (when R&D is a pure private good) to one (when R&D is a pure public good).

As to the rest of the model, we consider the standard two-period model of process R&D and product market com-

petition with the said deterministic one-way spillover process. We adopt the common specification of linear market

demand and identical linear firms' cost functions to facilitate closed-form solutions and comparability of outcomes

with past literature.

We now give an overview of the main results of the paper and some general discussion. Though firms are ex ante

identical, one obtains a unique pair of asymmetric equilibria so that the roles of R&D innovator (the more R&D-

intensive firm) and imitator (the less R&D-intensive firm) are endogenously determined. That is, a firm always either

spends less than its rival so as to free-ride on the latter's R&D investment through spillovers, or spends more if the

other firm's investment is too low in order to benefit from a competitive advantage over its rival in the product mar-

ket. This outcome produces asymmetries in terms of the unit cost structure in the product market competition, and

thus unequal market shares. This conclusion establishes a simple link between the nature of the R&D process in an

industry—including the associated spillover—and the emergence of inter-firm heterogeneity in that industry.

As we shall see below, it turns out to be more convenient to examine some of the economic issues considered in

this paper with a deterministic spillover process than with its stochastic analog (proposed by AW). One aspect of this

choice ismotivated by the ease of comparisonwith the deterministicmultiway spillover processes typically used in the

literature (as in Amir, 2000; d'Aspremont & Jacquemin, 1988; Kamien et al., 1992). Another difference between this

setting and the stochastic version in AW is that endogenous heterogeneity of firms in terms of R&Dand final unit costs

holds with certainty in the present setting, but only with positive probability in the AWmodel.

In the second part of the paper, we study R&D cooperation among firms by means of the formation of a joint lab,

thereby allowing firms to jointly appropriate the outcome of R&D investments, while sharing the associated costs

equally, as in Amir (2000). Kamien et al. (1992) have shown that, when the spillover process is multidirectional and

deterministic, cooperating through a joint lab is superior toR&Dcompetition in termsof levels of investments, industry

profit, and consumer surplus.4 In the context of one-way stochastic spillovers, AW find that, under R&D competition,

the innovator sometimes invests more in R&D than the joint lab, and the industry's total profit is sometimes higher

than under the joint lab. Clearly, because spillovers vanish under this type of cooperation, the same results obtain with

deterministic one-way R&D spillovers.5

In the third and most important part of the paper, we consider a benevolent central planner with a second-best

mandate, that is, one that candecideonR&D investmentswithout intervening as far asmarket conduct is concerned (as

2 That spillovers are an important aspect of firms' overall business strategy is well documented (see, e.g., Billand, Bravard, Chakrabarti, & Sarangi, 2016, for an

overview of the related literature). In addition, there are multiple channels through which spillovers might flow, including in trade-related contexts (see, e.g.,

Ferrier, Reyes, & Zhu, 2016).

3 For related settings, see also Jin and Troege (2006), Hinloopen (1997, 2000), Martin (2002), and Tesoriere (2008).

4 More precisely, these authors considered a cartelized joint venture defined as an R&D cartel (i.e, firms choose R&D levels to maximize their total Cournot

profits) wherein firms internally set the spillover parameter to its maximal value of 1. Amir (2000) shows that this cooperation scenario is equivalent to a joint

lab.

5 The literature onR&Dcooperation hasmore recently been extended to other areas of economics, including environmental innovation (McDonald&Poyago-

Theotoky, 2017), and the organization of the firm (Chalioti, 2015).
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in Suzumura, 1992).We consider two different scenarios, one in which the planner is subject to the political constraint

of equal treatment of the firms, and one in which the planner is free from such constraints. While the second-best

optimal symmetric investments coincide with those of the joint lab in the first scenario, social welfare achieved under

the joint lab is superior because R&D costs are shared among firms. Therefore, the joint lab emerges as a desirableway

to implement a constrained second-best optimal scenario without actual intervention by a social planner (and with

built-in avoidance of R&D duplication costs).

Furthermore, since imposing symmetric R&D investments yields symmetric final unit costs in the product market

competition, social welfare under R&D competitionmay dominate that under the symmetry-constrained central plan-

ner; in fact, this happens when R&D costs are low enough. Intuitively, this is not that surprising since social welfare

tends to be higher when firms are asymmetric in terms of unit costs (see Salant & Shaffer, 1998, 1999). In fact, as the

latter studies brought to the fore, welfare maximization often entails endogenous discriminatory treatment of firms

even under the standard multi-directional spillover structure. Thus, one important motivation for the welfare part of

the present paper is precisely that this endogenous discriminatory outcome will be even more significant under a uni-

directional spillover structure.

In this respect, it is obviously of interest to get a handle on the extent ofwelfare loss incurredby society as a result of

the politically motivated constraint of equal treatment of firms in regulation. Relaxing the assumption that the central

planner imposes equal treatment of firms, we find that social welfare induced by the second-best welfare maximizing

asymmetric R&D investments dominate that of the joint lab if either the spillover parameter or the cost of performing

R&D are low enough. Therefore, the well known result that the market typically delivers lower levels of R&D than a

(second-best) social planner continues to hold in our setting, despite the resulting asymmetry among firms.6 Finally,

we show that the efficiency loss due to equal treatment increases with the size of the spillover parameter, and may

amount to a maximal level of about 45% in relative terms. We argue that this is a surprisingly high and significant loss,

and that, broadly speaking,market regulatorsmaybewell advised to take this into accountwhen conceiving regulatory

schemes.

The rest of the paper is organized as follows. Section 2 describes the basic noncooperative R&D model and the

associated assumptions. Section 3 characterizes the equilibrium under R&D competition. Section 4 studies the effects

ofR&Dcooperationbymeansof a joint lab.Anextensive second-bestwelfare analysis is provided inSection5, including

a comparison with the non cooperative scenario and with the joint lab. Concluding remarks are provided in Section 6.

All the proofs (in the form of brief calculations) are provided in the appendix.

2 THE MODEL

The basic model is a standard two-stage duopoly consisting of a process R&D choice in the first stage and subsequent

Cournot competition in the second stage in the tradition of the literature following Katz (1986) and d'Aspremont and

Jacquemin (1988). However, although R&D is still subject to involuntary spillovers, these will be taken to one-way or

unidirectional in the present study, following Amir andWooders (2000), henceforth AW.

Formally, consider an industrywith two firms producing a homogenous goodwith the same initial unit cost c, playing

the following two-stage game. In the first stage, firms simultaneously choose their autonomous cost reduction level x1
and x2, with xi ∈ [0, c], i = 1,2. The R&D cost to firm i associated with the cost reduction xi is

C(xi) =
𝛾

2
x2i , i = 1,2.

We assume, following AW, that spillovers are unidirectional, or in other words that know-how flows only from the

more R&D-intensive firm (called the innovator) to its rival (the imitator). However, contrary to AW, we assume that

6 For instance, Burr, Knauff, and Stepanova (2013) provide some insight into the well known wedge between private and social levels of R&D. See also

Stepanova and Tesoriere (2011) and Amir, Halmenschlager, and Knauff (2017).
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the spillover process is deterministic; namely, if autonomous cost reductions are x1 and x2 with, say, x1 ≥ x2, then the

effective or final cost reductions are

X1 = x1 and X2 = x2 + 𝛽(x1 − x2),

where the parameter 𝛽 ∈ [0,1], called the spillover parameter, is the fraction of the difference in cost reductions that

spills over to firm 2 (with certainty).7 Thus, the imitator ends up with its own cost reduction plus a fraction of the inno-

vator's lead. This is a natural definition of spillovers in settingswhere the R&Dprocess is one-dimensional, reflecting in

particular that firm 1 has nothing to possibly learn from firm 2.

This deterministic spillover process may be seen as the certainty-equivalent version of the stochastic spillover

process introduced by AW. Both spillover processes are a reflection of the R&D process itself being a one-

dimensional process, that is, a well defined sequence of hurdles or tests that firms may pursue in their search for

discovery.8

In the second stage, upon observing the new unit costs firms compete in the productmarket by choosing quantities,

facing a linear inverse demand

P(q1 + q2) = a − (q1 + q2).

A pure strategy for firm i is thus a pair (xi, qi), where xi ∈ [0, c] and qi : [0, c]2 → ℝ+. Throughout, we use the standard

concept of subgame perfect equilibrium.

We assume that demand is high enough relative to the initial unit cost to ensure that the second-stage game admits

a unique pure strategyNash equilibrium (PSNE)where both firms are active in the productmarket for all possible R&D

levels that theymay undertake, that is,

Assumption 1. a > 2c.

Cournot equilibrium profit of firm i in the second stage, given the actual unit costs ci, cj, is thus given by Π(ci, cj) =
(a − 2ci + cj)2∕9. Firms' net profits F1, F2, defined as the difference between the second-stage profit and the first-stage

R&D investment, can then be expressed as functions of the autonomous cost reductions x1 and x2. Since the game

is symmetric, we have that F1(x1, x2) = F2(x2, x1). Therefore, throughout the paper, we omit the subscripts and write

F(xi, xj) to denote the net profit of firm i, where

F(xi, xj) =

{
1
9
[a − c + xi(2 − 𝛽) − xj(1 − 𝛽)]2 − 𝛾

2
x2
i

=̂U(xi, xj) if xi ≥ xj
1
9
[a − c + 2xi(1 − 𝛽) + xj(2𝛽 − 1)]2 − 𝛾

2
x2
i

=̂L(xi, xj) if xi ≤ xj.
(1)

One can easily check that F is globally continuous, concave in the two triangles above and below the diagonal, but has

a concavity-destroying kink along the diagonal. Furthermore, for 𝛽 ≤
1
2
, both U and L are submodular in (xi, xj), that

is,
𝜕2U(xi ,xj)
𝜕xi𝜕xj

< 0 and
𝜕2L(xi ,xj)
𝜕xi𝜕xj

< 0. On the other hand, for 𝛽 >
1
2
, U is submodular but L is supermodular in (xi, xj), that is,

𝜕2U(xi ,xj)
𝜕xi𝜕xj

< 0 and
𝜕2L(xi ,xj)
𝜕xi𝜕xj

> 0.

Furthermore, we assume the following:

Assumption 2. 9𝛾 > 2(2 − 𝛽)2.

Assumption 3. 9𝛾 > 4 a
c
(1 − 𝛽).

7 An analogous pair of expressions for the final cost reductions holds for the case x1 ≤ x2, and is thus omitted.

8 More precisely, the process need not be uni dimensional as long as there is a natural sequence of search steps that all firms would undertake. This is quite

distinct from themulti dimensional heuristic proposed byKamien et al. (1992) as an appropriate R&Dprocess corresponding to themultiway spillover process

that is widely adopted in the literature, starting with Spence (1984). Naturally, different industries will be better approximated by one or the other of these

two categories of spillover process.
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F IGURE 1 Reaction curves for different values of 𝛽

Close variants of these assumptions are quite standard in the R&D literature. Assumption 2 guarantees that U

and L are strictly concave with respect to own R&D level, and may thus be thought of as a global second-order

condition. Assumption 3 ensures that firm i's reaction function is interior, or that it satisfies ri(c) < c, where ri(xj) ∈
argmax {F(xi, xj) : xi ∈ [0, c]}.

3 THE NONCOOPERATIVE EQUILIBRIUM

In this section,weanalyze the subgame-perfect equilibria of the two-stagegame, tobe referred toasCaseN (fornonco-

operative scenario). Equivalently, we analyze theNash equilibria of the game inR&Dchoices, given the uniqueCournot

equilibrium in the second stage (with payoffs given by (1)).

Under Assumptions 2 and 3, one can derive the reaction function of, say, firm i as

ri(xj) =
⎧⎪⎨⎪⎩
2
(2−𝛽)

(
a−c+xj(𝛽−1)

)
9𝛾−2(𝛽−2)2 if xi ≥ xj

4
(1−𝛽)

(
a−c+xj(2𝛽−1)

)
9𝛾−8(𝛽−1)2 if xi ≤ xj,

(2)

and because the game is symmetric, we have ri(xj) = rj(xi).
Before characterizing the equilibrium investments of the first-stage R&D game, our first result sheds light on a key

feature of themodel, that firms' reaction functions cannot be continuous.

Lemma 1. The reaction functions admit a unique downward jump that skips over the 45◦ line.

Figure 1a (resp. 1b) depicts firms' reaction curves for 𝛽 ≤
1
2
(resp. 𝛽 >

1
2
). As was previously mentioned, the upper

payoff functionU is globally submodular in own and rival's decisions so that it gives rise to a reaction function segment

that shifts down as rival's investment increases. As for the lower payoff function L, it is also submodular in own and

rival's decision for 𝛽 ≤
1
2
(thus reflecting strategic substitutes), but supermodular for 𝛽 >

1
2
, so that its reaction function

segment shifts up (thus reflecting strategic complements) as rival's investment increases for this range of the spillover

parameter.9

9 In contrast to our model, each player's payoff function in AW is instead globally submodular in (xi , xj) so that reaction curves have the same shape as those

depicted in Figure 1a.
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Assumption 2 or Assumption 3 fails

F IGURE 2 Type of equilibrium

Given the firms' reaction functions, straightforward computations establish that reaction curves cross at (x, x) and
(x, x), where ⎧⎪⎨⎪⎩

x̄ = 1
DN

2(2 − 𝛽)[3𝛾 − 4(1 − 𝛽)2](a − c) and

x = 1
DN

4(1 − 𝛽)[3𝛾 − 2(1 − 𝛽)(2 − 𝛽)](a − c),

where

DN ≜ 27𝛾2 − 6𝛾(5𝛽2 − 12𝛽 + 8) + 8(2 − 𝛽)(1 − 𝛽)2.

It is easy to verify that x > x for any 𝛽 ∈ (0,1).
We need one further assumption on the parameters of themodel (for interiority).

Assumption 4.

9𝛾 > I(𝛽) ≜
(
a
c
− 1

)
(2 − 𝛽) + (5𝛽2 − 12𝛽 + 8)+

+
√

(
(
a
c
− 1

)
(2 − 𝛽) + (5𝛽2 − 12𝛽 + 8))2 − 24 a

c
(2 − 𝛽)(1 − 𝛽)2.

Webeginwith a characterization of the set of PSNE in the R&Dgamewith payoffs given in (1), and thus of subgame-

perfect equilibria of the two-stage game.

Proposition 1. Under Assumptions 1–4, the R&D game admits a unique pair of PSNE of the form (x, x) and (x, x).

Thus, although firms are ex ante identical, only asymmetric equilibrium pairs of R&D investments prevail. This gives

rise endogenously to a high R&D firm (called the innovator) and a low R&D firm (called the imitator).

As in the stochastic version of themodel, the equilibrium levels of R&D investments are asymmetric due to the non-

concavity of the net profit function F along the 45◦ line. By Lemma1, reaction curves jumpdownward over the diagonal

at x̂ as indicated in Figure 1 so that, in equilibrium, a firmwill always either spend less than its rival so as to free-ride on

the latter's R&D investment through spillovers, or spendmore if the other firm's investment is too low in order to ben-

efit from a competitive advantage over its rival in the product market. Notice that Assumption 4 ensures that the two

equilibrium pairs (x, x) and (x, x) are interior solutions. Instead, if Assumptions 1 through 3 are satisfied, but Assump-

tion 4 is not, we have a boundary equilibrium of the form (xB, xB) and (xB, xB), where xB = c and xB = 4 (a−2c(1−𝛽))(1−𝛽)
9𝛾−8(𝛽−1)2 .

Figure 2 graphs Assumptions 2 through 4 in the parameter space (𝛽 ,9𝛾) and shows whether an interior or a boundary
equilibrium prevails.
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As long as 𝛽 > 0, endogenous heterogeneity of firms will prevail with certainty in the present model. The one-

dimensional nature of the R&D process gives rise naturally to one-way spillovers, which in turn provide incentives for

firms to break off into an innovator and an imitator.10 While a similar outcome prevails on average in the AWmodel,

endogenous heterogeneity of firms materializes only with probability (1 − 𝛽), that is, when no spillover takes place ex
post.

Two special cases of the spillover parameter are worth highlighting. When 𝛽 = 1, R&D is a pure public good, and

the equilibrium autonomous and effective R&D levels, which reflect complete free-riding on the part of the follower

(firm 2) as onewould expect, are11

x = 4(a − c)
9𝛾 − 2

, x = 0 and X1 = X2 = 4(a − c)
9𝛾 − 2

.

When 𝛽 = 0, R&D is a pure private good, and the equilibrium autonomous and effective R&D levels reduce to

x = x = X1 = X2 = 4(a − c)
9𝛾 − 4

.

4 R&D COOPERATION

In this section, we examine R&D cooperation by means of a joint lab, which allows firms to jointly appropriate the out-

come of R&D investments in one and the same lab, while equally sharing the associated cost. This cooperation scenario

was introduced in Amir (2000) both as a maximal R&D cooperation scenario and as a useful benchmark due to the

absence of any spillover effects. This case will be referred to as Case J.

Recall that in models featuring the standard multidirectional spillover process with input spillovers (as in Kamien

et al., 1992; Spence, 1984), the so-called R&D cartel with spillover parameter internally increased to its maximal value

of 1 is equivalent to a joint lab (as shown in Amir, 2000). This equivalence justifies viewing the joint lab as a maximal

R&D cooperation scenario. In addition, this cooperation scenario delivers superior overall performance; it is shown in

Kamien et al. (1992) to dominate the other commonly used scenarios in terms of resulting firms' propensities for R&D,

firms' profit, and consumer surplus (and thus also social welfare).

In linewith its superior performance, the interest in this formof cooperation in the present studywill be seen to also

lie in the fact that it coincides with a constrained version of the second-best outcome.

Under this scenario, the joint lab chooses a level of R&D thatmaximizes the sum of firms' profits, net of the (shared)

R&D cost. Thus, the problem of the joint lab is

max
x∈[0,c]

{
2
9
(a − c + x)2 − 𝛾

2
x2
}

.

Themaximization yields the following per firm optimal level of investment:

xJ =

{
4 a−c
9𝛾−4 if9𝛾 > 4 a

c

c otherwise.

Figure 3 showswhether an interior or a boundary equilibrium prevails under the joint lab.

The next proposition provides a comparison of the joint lab's R&D investment with those of the noncooperative

game (as depicted on Figure 3).

Proposition 2. Under Assumptions 1–4, the comparison of the equilibrium R&D levels in cases J and N is as follows:

10 As such, the present paper joins a recent trend of research in applied theoretical economics dealing with the endogenous emergence of asymmetric out-

comes pertaining to ex ante identical agents. This is generally referred to as symmetry-breaking (a term borrowed from theoretical physics), or endogenous

heterogeneity. See, inter alia, Matsuyama (2002), Amir, Garcia and Knauff (2010), Basu, Basu and Cordella (2016), Yazici (2016), Acemoglu, Robinson, and

Verdier (2017), and Chatterjee (2017).

11 Indeed, conditional on being a follower, a firm has a dominant strategy of doing no R&D, as reflected by a reaction curve identically equal to 0 in (2).
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Assumption 2 or Assumption 3 fails

F IGURE 3 Comparison of equilibrium R&D levels in cases N and J

(i) xJ = x = x = 4(a−c)
9𝛾−4 if and only if 𝛽 = 0.

(ii) xJ < x̄ if 9𝛾 < 4(1 − 𝛽)(4 − 3𝛽), and xJ > x̄ otherwise.

(iii) xJ > x + 𝛽(x̄ − x).

(iv) If both (x, x) and xJ are interior, then total effective cost reductions under the joint lab (case J) dominate those of the non-
cooperative setting (case N).

The first part of the result captures the fact that, without any spillovers, the firms not only undertake the same level

of R&D at equilibrium, but also that they actually undertake the same level as they would in a joint lab.

The second part says that the innovator invests more in R&D than the joint lab if the spillover parameter and/or

the R&D costs are low enough. Intuitively, in the noncooperative setting, the prospect of efficiency gains when com-

peting in the product market with a weaker rival boosts R&D investments in the first stage if these two conditions

are satisfied. Conversely, its incentives to exert R&D effort are undermined if either the associated cost is large or

the fraction of its cost reduction that spills over the imitator is high. Consequently, in this case, the joint lab reaches a

higher level of cost reduction by both splitting the cost of undertakingR&Damong firms and suppressing the free-rider

issue.

Not surprisingly, the level of R&Dperformedby the imitator in thenoncooperative case is instead strictly lower than

the joint lab's optimal cost reduction for any R&D cost and any spillover rate because R&D competition leaves scope

for free riding over the innovator's investment due to the existence of spillovers.

Finally, for interior solutions, the total effective cost reduction achieved by means of cooperation via a joint lab is

greater than in the noncooperative case. This last finding is in line with past results in the literature on the joint lab's

superiority in terms of the resulting propensity for R&D (Amir, 2000; Kamien et al., 1992).

Next, we examine the impact of R&D cooperation on firms' equilibrium profit. Equilibrium per-firm profit under a

joint lab is given by

F̃(xJ) =
⎧⎪⎨⎪⎩

𝛾(a−c)2
9𝛾−4 if 9𝛾 > 4 a

c
a2

9
− 𝛾c2

4
otherwise.
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The following table provides a full comparison of the innovator's equilibriumprofit for interior and boundary equilibria

in both settings.

R&D cooperation through a joint lab

Interior (9𝜸 > 4 a
c
) Boundary (9𝜸 < 4 a

c
)

R&D competition Interior (9𝛾 > I(𝛽) ) F̃(xJ) > F(x, x) F̃(c) > F(x, x)

Boundary (9𝛾 ≤ I(𝛽) ) F̃(xJ) ⋛ F(xB, xB) F̃(c) > F(xB, xB)

Observe first that the innovator is strictly better off cooperating with its rival whenever the interior equilibrium

would otherwise prevail in the noncooperative setting since the joint lab allows to share both the cost and the results

of R&D investments, while leaving no role for spillovers. The superiority of cooperation is nonetheless jeopardized

whenever 4 a
c
< 9𝛾 ≤ I(𝛽). In this region of parameters, R&D competition enables the innovator to stand out from its

rival in terms of efficiency gains in the product market, so that its higher profit at the competition stage outweighs

both the cost of undertaking R&D and the losses associatedwith a lower appropriability of its investment. Notably, the

innovator strictly prefers to incur substantial R&D expenditures the lower the spillover parameter, so that asymme-

tries in terms of unit costs are exacerbated at the competition stage. For instance, letting a = 2.2, c = 1, 𝛽 = 0.1, and

𝛾 = 1.16, we have that F̃(xJ) = 0.259 < 0.274 = F(xB, xB).
Likewise, the next table compares the imitator's equilibrium profit under both regimes.

R&D cooperation through a joint lab

Interior (9𝜸 > 4 a
c
) Boundary (9𝜸 < 4 a

c
)

R&D competition Interior (9𝛾 > I(𝛽) ) F̃(xJ) > F(x, x) F̃(c) ⋛ F(x, x)

Boundary (9𝛾 ≤ I(𝛽) ) F̃(xJ) > F(xB, xB) F̃(c) > F(xB, xB)

The imitator strictly prefers cooperating with the innovator unless I(𝛽) < 9𝛾 < 4 a
c
, in which case R&D competition

may be superior as it enables the imitator to freely benefit from the innovator's investment through spillovers. More

specifically, free riding becomesmore profitable than sharing the cost of undertaking R&Dwith the innovator for large

values of the spillover parameter. To see this, let a = 5, c = 1, 𝛽 = 0.95, and 𝛾 = 1.38. Then, we have that F̃(c) = 2.43,

while F(x, x) = 2.5.

Even though firms inherit the same cost structure under a joint lab, thereby dissipating firms' total profit in the

product market, cooperation through a joint lab allows firms to share R&D costs, thereby avoiding the inefficiencies

associated with the free-rider issue inherent to the noncooperative setting. The next result establishes that the latter

effect dominates the former, therebymaking the industry strictly better off when cooperating through a joint lab.

Proposition 3. 2F̃(c) ≥ F(x, x) + F(x, x) and 2F̃(xJ) ≥ F(xB, xB) + F(xB, xB).

As a brief conclusion for this section, it may be said that, while the endogenous asymmetry can reverse some of the

established conclusions on the superiority of the joint lab in the literature, these conclusions can be restored when

considering aggregate performance.

5 WELFARE ANALYSIS

In this section, we consider a benevolent central planner with a second-best mandate, that is, one that is endowed

with the authority to decide on R&D investments but has no control or influence over the firms' market conduct once

R&D levels have been selected.We first examine the case where the planner is constrained to impose symmetric R&D
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expenditures across firms (i.e, to satisfy the principle of equal treatment of equals). We shall refer to this planner's

scenario as Case PS (for second-best planning under symmetric treatment of firms).12

We then consider the casewhere the social planner is unconstrained in its choices ofR&D levels and can thus exploit

the benefits of asymmetric choices. We abbreviate this planner's scenario as Case PA (for second-best planning under

possible asymmetry). Finally, we compare the twodifferent planning solutions and examine the social costs of imposing

equal treatment among firms.

Assume without loss of generality that x1 > x2, and define social surplus (welfare) in the usual way as the sum of

firms' profit and consumer surplus, that is, we have

S(x1, x2, q1, q2) =
(
q1 + q2

)(
a −

(
q1 + q2

)
2

)
− (c − x1)q1 − (c −

(
x2 + 𝛽(x1 − x2)

)
)q2 −

𝛾

2

(
x21 + x22

)
.

Given the Cournot equilibrium in the second stage of the game, one can write social welfare as a function of the R&D

(first-period) decisions by substituting the Cournot outputs into S(x1, x2, q1, q2). This yields

W(x1, x2) =
1
18

[
8(a − c)

(
(a − c) + x1(1 + 𝛽) + x2(1 − 𝛽)

)
(3)

− x21

(
9𝛾 + 14𝛽 − 11𝛽2 − 11

)
− x22

(
9𝛾 − 11(1 − 𝛽)2

)
+ 2x1x2(11𝛽 − 7)(1 − 𝛽)

]
.

5.1 Symmetric second-best planner's solution

In this subsection, the planner is constrained to select symmetric R&D expenditures for the two identical firms, and

thus to satisfy the principle of equal treatment of equals when engaging in any sort of regulation of firms. The main

finding here is that the planner's solution yields the same R&D for each firm as a joint lab.

The problem of the central planner is thus (see (3))

max
(x1 ,x2)∈[0,c]2

{W(x1, x2) : x1 = x2}.

Upon a simple computation, the optimal symmetric per firm investment level and the corresponding symmetric-

optimal second-best welfare are given by

xs =
4(a − c)
9𝛾 − 4

and W
(
xs, xs

)
= 4𝛾(a − c)2

9𝛾 − 4
.

As seen by simple inspection, the symmetry-constrained socially optimal level of R&D coincides with the optimal

R&D level of the joint lab, that is, xs = xJ, and therefore

xs = x = x = 4(a − c)
9𝛾 − 4

if and only if 𝛽 = 0.

This coincidence of R&D levels means that the joint lab is a socially optimal form of R&D cooperation under the equal

treatment restriction. Furthermore, noncooperative R&D yields a second-best symmetry-constrained socially optimal

level of R&D as long as R&D spillovers are fully absent. The latter requirement is quite unrealistic, since spillovers are

typically considered as an unavoidable characteristic of the technological environment in an industry.13

Another direct implication of this outcome is that a joint lab emerges as one possible and practicalway to implement

a symmetric socially optimal scenario without involving a central planner at all.

12 It is worth stressing that this principle is widely taken for granted in the formulation of public policy. As such, it is generally not even a subject of debate,

although, as we shall see, this is not necessarily in society's interest in the present context.

13 Naturally, the level of spillovers may be influenced by location patterns, patent policy, and other factors. Nevertheless, it is unrealistic to assume that they

may be driven down all the way to zero.
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Furthermore, because the joint lab avoids the duplication of R&D costs by definition, it leads to a welfare levelWJ

that is clearly strictly higher then the symmetric-optimal second-best welfare, that is,WJ > W(xs, xs).14 A brief calcula-

tion shows that

WJ =
4𝛾(9𝛾 − 2)(a − c)2

(9𝛾 − 4)2
,

The fact that xs = xJ yields the following from the results on the joint lab.

Proposition 4. The comparison of the equilibrium R&D levels in cases PS and N is as follows:

(i) xs = xJ = x = x = 4(a−c)
9𝛾−4 if and only if 𝛽 = 0.

(ii) xs < x̄ if 9𝛾 < 4(1 − 𝛽)(4 − 3𝛽), and xs > x̄ otherwise.

(iii) xs > x always.

Again, the case of no spillovers yields an exceptional outcomeworth highlighting. Not only does the noncooperative

solution coincide with the joint lab, it also yields a symmetry-constrained second-best socially optimal level of R&D.

The direct implication of this simple observation is obvious yet quite important:With no spillovers, themarket solution

is second-best efficient (albeit in a constrained manner), so laissez-faire, as opposed to both intervention or a joint lab,

is the way to go.

While the unconstrained social planner inherits the incentive to create a high R&D firm and a low R&D firm, just

like firms in Case N, the planner would generate a smaller spread between the firms when R&D costs are low (or 𝛾

small), and a higher level of R&D for both firms when R&D costs are high. The latter outcome is of course the standard

implication of social planning for R&D, the aim being to correct for the market's tendency to supply too little R&D, due

to thewell known and documented gap between private and social returns to R&D (see, e.g., Bernstein &Nadiri, 1988;

Griliches, 1995). On the other hand, it is certainly noteworthy that, with low R&D costs, the market outcome leads to

more R&D for the innovator than the socially optimal solution.

Whether symmetric-optimal welfareW(xs, xs) is superior to that of the noncooperative setting instead depends on
themagnitude of R&D costs. Two conflicting effects need to be considered. On the one hand, imposing symmetric R&D

investments implies that firms face the same unit cost when competing in the product market, which in turn leads to

total profit dissipation. On the other hand, because xs = xJ, total effective cost reductions are higher in the symmetric

planner's solution (see Proposition 2). It follows that consumers benefit from a lower price under the latter solution.

The following result characterizes regions of parameters for which either effect dominates.

Proposition 5. The ranking of welfare levels under Cases N, J, and PS is as follows:

WJ ≥

{
W(x̄, x) > W

(
xs, xs

)
if9𝛾 < K

W
(
xs, xs

)
> W(x̄, x) otherwise,

where

K = 1
2
(43𝛽2 − 102𝛽 + 55) + 1

2

√
1057 − 4212𝛽 + 5870𝛽2 − 3396𝛽3 + 697𝛽4.

Not surprisingly, total welfare when firms cooperate through a joint lab exceeds that of the noncooperative setting.

Indeed, both the innovator and the imitator get a strictly higher profitwhen cooperating (cf. Section 4).Moreover, since

the second-best welfare maximizing symmetric R&D investments coincide with those of the joint lab, Proposition 5

applies. Namely, total effective cost reductions are higher than those achieved in the noncooperative setting so that

aggregate production costs are lower whenever a central planner intervenes in the R&D game. It directly follows that

firms charge a lower price, and that consumer surplus is higher, that is, CS(xs, xs) ≥ CS(x̄, x).

14 More precisely,WJ = W(xs, xs) −
𝛾x2s
4

. Note thatWJ cannot be expressed via the functionW(⋅, ⋅).
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Recall that Kamien et al. (1992) demonstrated that, in the analogous model but with two-way spillovers, the joint

lab (or the cartelized R&D joint venture as they described it in an equivalentmanner) is superior in terms of propensity

for R&D and social welfare to the other three scenarios examined in that paper. Here, we show that, with one-way

spillovers, the joint lab actually yields the socially optimal level of R&D subject to the equal treatment restriction.

The key conclusion of this part is that a joint lab may be regarded as a simple and noninterventionist manner of

actually implementing a second-best socially optimal outcome for a duopoly with one-way spillovers. Indeed, while

second-best planning is often taken as a useful benchmark for policy analysis, a joint lab represents an actual institution

that can not only lead to the social levels of R&D, but also avoid the duplication costs in carrying out the R&D.

Next, we relax the assumption that the social planner imposes equal treatment across firms.

5.2 Asymmetric second-best planner's solution

In this part, the problem of the social planner is now to choose a pair of (possibly asymmetric) R&D investments that

maximizes total welfare, as given by Equation 3, that is,

(xa, xa) ∈ argmax
(x1 ,x2)∈[0,c]2

W(x1, x2). (4)

Intuitively, one would expect the global argmax of social welfare to be asymmetric, as a result of the well known fact

that Cournot equilibrium industry profit is convex in firms unit costs. In other words, industry profit tends to be higher

when firms are asymmetric in terms of unit costs, and this property is inherited by social welfare (see, e.g., Salant &

Shaffer, 1998, 1999; Soubeyran &Van Long, 1999).

Indeed, this intuition is confirmed by the solution, as it may be easily verified that the optimal investment levels are

given by

xa =
4
Da

[𝛾(𝛽 + 1) − 2(1 − 𝛽)2](a − c) and xa =
4
Da

[𝛾 − 2(1 − 𝛽)](1 − 𝛽)(a − c),

where

Da ≜ 9𝛾2 − 2𝛾(11𝛽2 − 18𝛽 + 11) + 8(1 − 𝛽)2.

It is easy to check that this solution is always asymmetric for any nonzero value of 𝛽 , that is, that

xa ≥ xa with equality if and only if 𝛽 = 0.

Therefore, in industries with nonzero one-way spillovers, the social planner always faces a clear incentive for unequal

treatment of regulated firms, evenwhen these are ex ante symmetrical.15

Two special cases of the spillover parameter are worth reporting. When 𝛽 = 1, R&D is a pure public good, and the

second-best autonomous and effective R&D levels, reflecting the fact that the planner takes full advantage of the per-

fect spillovers for the follower (firm 2), are

(xa, xa) =
(
8(a − c)
9𝛾 − 8

,0
)

and X1 = X2 = 8(a − c)
9𝛾 − 2

.

15 A lengthy computation shows that 0 < xW
2

< xW
1

< c if 9𝛾 > 18(1 − 𝛽) and 9𝛾 > Z1, where

Z1 = 2
a
c
(1 + 𝛽) − (11𝛽 − 9)(1 − 𝛽) +

+ 1
c

√
(11𝛽 − 9)2(𝛽 − 1)2 + 4( a

c
)2(𝛽 + 1)2 + 4

a
c
(𝛽 − 1)

(
11𝛽2 − 16𝛽 + 9

)
.
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When 𝛽 = 0, R&D is a pure private good, and the autonomous and effective R&D levels reduce to

x = x = X1 = X2 = 4(a − c)
9𝛾 − 4

.

The corresponding optimal level of social welfare for any 𝛽 ∈ [0,1] is

W(xa, xa) =
4
Da

𝛾[𝛾 − 2(1 − 𝛽)2](a − c)2.

Since symmetric choices of R&D levels are one option that the social planner has in the optimization problem (4), it

follows thatW(xa, xW ) > W(xW, xW ), as is easily verified by direct calculation. Nevertheless, despite its suboptimality,

the constrained-symmetric solution may well be of substantial real-life interest, since implementing an asymmetric

solution on a priori identical firms is likely to be politically infeasible. It would be akin to forging a national champion

and aweak firm out of two equally efficient firms.

Our next result compares the second-bestwelfare-maximizing asymmetric R&D investmentswith those of the non-

cooperative setting, as well as the associated effective cost reductions.

Proposition 6. The second-best welfare maximizing asymmetric R&D investments satisfy

(i) xa > x̄ and xa > x if 𝛽 >
2
3
, while xa < x if both 𝛽 ≤

2
3
and 9𝛾 >

2(1−𝛽)(23𝛽−11−11𝛽2)
(3𝛽−2) .

(ii) (1 + 𝛽)xa + (1 − 𝛽)xa > (1 + 𝛽)x̄ + (1 − 𝛽)x.

For part (i), it is noteworthy that for small spillover rates, the social plannerwould actually dictate a lower R&D level

for the imitator. The intuition for this finding is that the social planner is more apt than the noncooperative solution to

take advantage of the aforementioned asymmetry premium for social welfare, and thusmore prone to a higher disper-

sion in R&D levels.

Part (ii) of this result is not surprising; it simply confirms for the particular setting at hand a well known general fact

about innovation in general: that the market typically undersupplies R&D, due to well-established market failures, in

particular to the imperfectly appropriable nature of process R&D here. Thus, even a second-best social planner would

typically choose to generate higher levels of effective R&D.

Furthermore, while total welfare achieved under symmetric regulation is inferior to that induced by the joint lab,

the next result states on the contrary that asymmetric regulation often welfare-dominates the joint lab.

Proposition 7. Total welfare induced by the asymmetric second-best welfare maximizing R&D investments satisfies the fol-

lowing:

(i) W(xa, xa) > W(xs, xs),

(ii) W(xa, xa) > WJ if either 𝛽 ≥

√
2
2

or 𝛽 <

√
2
2

and 9𝛾 < Z3, where

Z3 = (1 − 𝛽)
7𝛽 − 11 −

√
193𝛽2 − 154𝛽 + 49

2𝛽2 − 1
.

Part (i) is an obvious statement in that it captures the premium to the social planner of having fully flexible choices

in firms' R&D levels. A quantitative assessment of the welfare loss to being subject to the symmetry constraint in R&D

choices is investigated in the next subsection.

An intuitiveunderstanding forpart (ii) of this resultmaybeachievedas follows. The comparisonathand involves two

issues with respect to which the two scenarios hold opposite positions: R&D duplication costs and symmetry of R&D

choices. The joint lab has the advantage of avoidingR&Dduplication costs but forces firms to settle for symmetric R&D

levels. On the other hand, unconstrained welfare maximization faces R&D duplication costs but allows asymmetric

R&D choices. Part (ii) states that the second-best asymmetric regulation (or Case PA) welfare-dominates the joint lab

(Case J) when either the spillover parameter is high enough or else when R&D is relatively less costly.
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Therefore, overall themainmessage of this proposition is that the flexibility to choose asymmetric R&D levels often

contributes substantially to social welfare.We now examine this issue in a quantitative sense.

5.3 Thewelfare cost of equal treatment

Wehave seen that, in industrieswith (nonzero) one-way spillovers, the social planner always has an incentive to engage

in discriminatory regulation of the two firms in order to maximize social welfare. However, in most societies, political,

moral, and other fairness considerations will dictate that the social planner engage instead in equal treatment of regu-

lated firms, in total disregard of any resulting loss of social welfare. In this subsection, we investigate the value of the

welfare loss due to the equal treatment constraint, and its comparative statics as the parameters of the model vary

exogenously.

The welfare loss is defined as the difference between asymmetric and symmetric optimal second-best welfare,

that is,

L = W(xa, xa) −W
(
xs, xs

)
.

Using the expressions for the two welfare levelsW(xa, xa) andW(xs, xs) ≜ W given above, one arrives upon simplifica-

tion at

L = 16𝛽2𝛾2(a − c)2

(9𝛾 − 4)Da
.

It is easy to verify that 𝜕L
𝜕𝛽

> 0. This is intuitive, because it simply reflects that, being due to the nature of the spillover

process, the scope for endogenous heterogeneity of firms' post-R&D costs increases with the size of spillovers.

Furthermore, as 𝛽 increases from 0 to 1, it may be verified that the welfare loss L increases from 0 to

L = 16𝛾2(a−c)2
(9𝛾−4)(9𝛾2−8𝛾+8) .

Therefore, becauseW is independent of 𝛽 , L
W

can be as high as 16𝛾2(a−c)2
(9𝛾−4)(9𝛾2−8𝛾+8) ∕

4𝛾(a−c)2
(9𝛾−4) = 4𝛾

9𝛾2−8𝛾+8 . Maximizing the

latter expressionwith respect to 𝛾 yields a unique argmaxof 𝛾∗ ≈ 0.943, and a correspondingmaximal value of L
W
equal

to 0.446.16

We have just established part (ii) of the following result (part (i) follows directly from evaluating and signing dL∕d𝛽
and dL∕d𝛾 . This is easy to do, and is thus left to the reader).

Proposition 8. The welfare loss L due to equal treatment in R&D regulation satisfies

(i) L is increasing in 𝛽 and in (a − c), and decreasing in 𝛾 .

(ii) The maximal welfare cost of equal treatment in relative terms, L
W
, is 44.6%.

This number is remarkably high, evenwhenunderstoodas just a conceivable upper boundon the relative size ofwel-

fare loss. Indeed, the actual loss for a particular industry will depend on the specific values of 𝛽 and 𝛾 (the lower bound

of this loss is clearly 0, which is easily seen to be achieved for a spillover value of 𝛽 = 0, due to the symmetric solution

then). This illustration clearly indicates that this ubiquitous aversion to unequal treatment can lead to quantitatively

significant losses.

The dichotomy between normative and positive (or politically constrained) efficiency emerges in several different

settings in the process of implementing various aspects of public policy. Different manifestations of the same funda-

mental issue may be seen in a number of different studies covering various areas of economics, including, for instance,

Spencer and Brander (1985), Salant and Shaffer (1998, 1999), Matsuyama (2002), Basu et al. (2016), Yazici (2016),

Acemoglu et al. (2017), and Chatterjee (2017), amongmany others.

16 The ratio L
W turns out (when evaluated at 𝛽 = 1) to be strictly quasi-concave in 𝛾 , so that the first-order condition is necessary and sufficient for a unique

argmax. In addition, Assumptions 2 and 3 are easily seen to be satisfied around 𝛾∗ ≈ 0.943.
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6 CONCLUSION

This paper has investigated the properties of a symmetric two-period R&Dmodel that departs from the standard set-

ting by adopting a deterministic one-way spillover structure. The latter is a reflection of the one-dimensional nature of

theR&Dprocess. Though firms are ex ante identical, one obtains a unique pair of asymmetric equilibria in terms of R&D

investments. Thus, the roles of R&D innovator and imitator are endogenously determined as a direct consequence of

the one-way spillover structure. This establishes a simple link between the nature of the R&D process in an industry—

including the associated spillover—and the emergence of interfirm heterogeneity in that industry. Another goal of the

paper was to investigate the relative performance of R&D cooperation through a joint lab. We find that the innovator

sometimes invests more in R&D than the joint lab, and the industry's total profit is sometimes higher than under the

joint lab.

The main part of the paper provides a welfare analysis in which we examine the usual question of how distortive

the noncooperative equilibrium is, in terms of propensity for R&D and equilibrium welfare. To this end, we consider a

realistic second-best social planner who selects firms' R&D levels but does not control their Cournot market conduct.

We also compare the performance of the joint lab as an R&D cooperation scenario with the second-best optimum.

Under the constraint of symmetric treatment of the firms by the planner, the socially optimal solution yields the same

R&D level as the joint lab. It follows that the latter is a practical way to realize the second-best level of R&D without

direct intervention.

Finally, due to the fact that the same forces that lead to asymmetric Nash equilibrium in R&D levels also lead to

asymmetric (unconstrained) social optima, we investigate in some detail the social costs (or welfare loss) of imposing

the politicallymotivated constraint of symmetric R&D investments among firms.We find that this social cost can reach

the highly significant level of 45% in relative terms.

APPENDIX: PROOFS

Proof of Lemma 1. The reaction function r as given by (2) is not continuous because, letting xS1 = r1(xS1) for x1 ≥ x2 and

xS2 = r1(xS2) for x1 ≤ x2, one obtains

xS1 = 2(a − c)(2 − 𝛽)
(9𝛾 − 2(2 − 𝛽))

, and xS2 = 4(a − c)(1 − 𝛽)
(9𝛾 − 4(1 − 𝛽))

with xS1 > xS2. Hence, the reaction function has a downward jump, and letting x̂ be the solution to U(r1(x̂), x̂) =
L(r1(x̂), x̂), we have that

x̂ =
(a − c)

(√
1 + 2𝛽(4−3𝛽)

(9𝛾−2(𝛽−2)2) − 1

)
(
2𝛽 − 1 + (1 − 𝛽)

√
1 + 2𝛽(4−3𝛽)

(9𝛾−2(𝛽−2)2)

) . (A1)

Furthermore, x̂ is unique since bothU and L aremonotonic in x2.U is decreasing in x2 for all 𝛽 ∈ [0,1], whereas L either
increases with x2 for 𝛽 > 1∕2 or decreases with x2 slower thanU. ■

Proof of Proposition1. A lengthybut simple computation establishes that x̄, x as givenby (3) and (4) satisfy x > x̂ if 9𝛾 > I1
and x < x̂ if 9𝛾 > I2, with x̂ as defined by (10) and

I1 = (5𝛽2 − 12𝛽 + 8) +
√
13𝛽4 − 48𝛽3 + 68𝛽2 − 48𝛽 + 16,

I2 = (5𝛽2 − 12𝛽 + 8) +
√
73𝛽4 + 224𝛽2 − 216𝛽3 − 96𝛽 + 16.

Straightforward computations then establish that I(𝛽) > I1 and I(𝛽) > I2. Hence, if Assumptions 1 through 4 hold, the

pair of PSNE (x, x) and (x, x), with x̄, x as given by Equations 3 and 4 is unique. ■
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Proof of Proposition 2.

(i) This is seen by inspection.

(ii) Wehave that

xJ − x̄ = 4(a − c)
9𝛾 − 4

−
2(a − c)(2 − 𝛽)

(
3𝛾 − 4(𝛽 − 1)2

)
DN

.

Simplifying and rearranging then leads to sign(xJ − x̄) = sign(28𝛽 + 9𝛾 − 12𝛽2 − 16) < 0 if and only if 9𝛾 < 4(1 −
𝛽)(4 − 3𝛽).

(iii) Similarly, it can be shown that

xJ −
(
x + 𝛽

(
x̄ − x

))
= 4(a − c)

9𝛾 − 4
−
2(a − c)

(
3
(
𝛽2 − 2𝛽 + 2

)
𝛾 − 4(2 − 𝛽)(𝛽 − 1)2

)
27𝛾2 − 6𝛾

(
5𝛽2 − 12𝛽 + 8

)
+ 8(2 − 𝛽)(1 − 𝛽)2

> 0 if 9𝛾 >
4(1 − 𝛽)(5 − 3𝛽)

(2 − 𝛽)
,

which can be shown to hold for all the parameter values for which the Nash equilibrium is interior, or if I(𝛽) >
4(1−𝛽)(5−3𝛽)

(2−𝛽) .

(iv) Total cost reductions achieved under cooperation through a joint lab formation dominate those of the noncooper-

ative regime if
8(a − c)
9𝛾 − 4

>(1 + 𝛽)
2(a − c)(2 − 𝛽)

(
3𝛾 − 4(𝛽 − 1)2

)
DN

+ (1 − 𝛽)4(a − c)(1 − 𝛽) (3𝛾 − 2(𝛽 − 1)(𝛽 − 2))
DN

⇔ 9𝛾 >
12(1 − 𝛽)(3 − 2𝛽)

(3 − 𝛽)
,

which holds at an interior equilibrium because I(𝛽) > 12(1−𝛽)(3−2𝛽)
(3−𝛽) . ■

Proof of Proposition 3. We first check that 2F̃(xJ) > F(xB, xB) + F(xB, xB) holds for 4
a
c
< 9𝛾 ≤ I(𝛽). It may be verified that

the difference 2F̃(xJ) − F(xB, xB) − F(xB, xB) is positive if and only if

− 729c2𝛾4 + 162c𝛾3(13c𝛽2 + (2a − 26c)𝛽 + 2a + 13c)

− 72((21 − 32𝛽 + 16𝛽2)(1 − 𝛽)2c2 − 2a(1 − 𝛽)(−6 + 6𝛽 + 𝛽2)c + 2a2)𝛾2

+ 32(1 − 𝛽)2(8(1 − 𝛽)2c2 + 2a(7 − 8𝛽)(1 − 𝛽)c + a2(9 − 2𝛽 + 𝛽2))𝛾 − 128a2(1 − 𝛽)4 < 0.

Numerical computations then establish that this inequality holds for 9𝛾 ∈ [4 a
c
, I(𝛽)] .

In a similar fashion, we now shall show that 2F̃(c) > F(x, x) + F(x, x) for I(𝛽) < 9𝛾 < 4 a
c
. A lengthy computation estab-

lishes that the sign of the difference 2F̃(c) − F(x, x) − F(x, x) is the same as that of L, where

L = − 6561c2𝛾5 + 𝛾4(14580c2𝛽2 − 34992c2𝛽 + 20412c2 + 5832ac)

+ 𝛾3(972a2𝛽2 − 1944a2𝛽 − 14904ac𝛽2 + 34992ac𝛽c2

− 20736ac − 8100c2𝛽4 + 42768c2𝛽3 − 80676c2𝛽2 + 64152c2𝛽 − 18144)

+ 𝛾2(9072a2𝛽3 − 2232a2𝛽4 − 11592a2𝛽2 + 4320a2𝛽 + 576a2 + 11664ac𝛽4 − 56160ac𝛽3 + 101520ac𝛽2

− 81216ac𝛽 + 24192ac − 4320c2𝛽5 + 21816c2𝛽4 − 41904c2𝛽3 + 37368c2𝛽2 − 14688c2𝛽 + 1728c2)

+ 𝛾(1152a2𝛽6 − 7296a2𝛽5 + 17664a2𝛽4 − 19584a2𝛽3 + 8064a2𝛽2 + 1536a2𝛽 − 1536a2 − 2304ac𝛽6

+ 18432ac𝛽5 − 59904ac𝛽4 + 101376ac𝛽3 − 94464ac𝛽2 + 46080ac𝛽 − 9216ac + 576c2𝛽6 − 4608c2𝛽5
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+ 14976c2𝛽4 − 25344c2𝛽3 + 23616c2𝛽2 − 11520c2𝛽 + 2304 + c2)

+ (256a2𝛽6 − 2048a2𝛽5 + 6656a2𝛽4 − 11264a2𝛽3 + 10496a2𝛽2 − 5120a2𝛽 + 1024a2).

For apparent reasons, we had to rely on numerical computations then to demonstrate that L > 0 for 9𝛾 ∈ [I(𝛽),4 a
c
]. ■

Proof of Proposition 5. We first shall show thatWJ > W(xW, xW ). We have that

4
(9𝛾 − 2)(a − c)2𝛾

(9𝛾 − 4)2
> 4

(a − c)2𝛾
(9𝛾 − 4)

⇔ 9𝛾 > 3,

which holds fromAssumption 2 and the fact that 9𝛾 > 4 a
c
.

Next, we establish that WJ ≥ W(x̄, x). From Section 3.5, we have that 1
2
F(xJ) > F(x, x̄) and 1

2
F(xJ) > F(x̄, x) for 9𝛾 >

max{4 a
c
, I(𝛽)}. Hence, it directly follows that the industry's profit under the joint lab formation exceeds that of the

noncooperative setting, that is,

F(xJ) > F(x, x̄) + F(x̄, x). (A2)

Therefore, a sufficient condition forWJ ≥ W(x̄, x) to hold is that consumer surpluswhen firms cooperate through a joint

lab is higher. The difference CS(xJ, xJ) − CS(x̄, x) is given by

2

(
3𝛾(a − c)
(9𝛾 − 4)

)2

− 18 (3𝛾 + (1 − 𝛽)(3𝛽 − 4))2 (a − c)2𝛾2(
27𝛾2 − 6𝛾

(
5𝛽2 − 12𝛽 + 8

)
− 8(𝛽 − 2)(𝛽 − 1)2

)2 .
Straightforward computations then establish that CS(xJ, xJ) − CS(x̄, x) ≥ 0 if and only if K1.K2 ≥ 0, where

K1 = (4(1 − 𝛽)(2𝛽2 − 9𝛽 + 8) + 54𝛾2 − 3𝛾(19𝛽2 − 45𝛽 + 32)),

K2 = (3𝛾(3 − 𝛽) − 4(1 − 𝛽)(3 − 2𝛽)).

Both K1 and K2 are positive for all 9𝛾 > I(𝛽). Thus, we have that

CS
(
xJ, xJ

)
≥ CS(x̄, x). (A3)

Hence, (11) together with (12) establish the superiority of the joint lab in terms of welfare.

Finally, the differenceW(x̄, x) −W(xW, xW ) is given by

2𝛾(a − c)2
[
162𝛾3 − 9𝛾2

(
41𝛽2 − 96𝛽 + 56

)
+ 3𝛾

(
81𝛽2 − 224𝛽 + 160

)
(1 − 𝛽)2 − 32(2 − 𝛽)2(1 − 𝛽)4

](
27𝛾2 − 6𝛾

(
5𝛽2 − 12𝛽 + 8

)
− 8(𝛽 − 2)(𝛽 − 1)2

)2
− 4

(9𝛾 − 2)(a − c)2𝛾
(9𝛾 − 4)2

.

Simplifying and rearranging, we have that

W(x̄, x) > W
(
xW, xW

)
⇔ 9𝛾 ∈

(
K3, K

)
,

with K as indicated in the proposition and

K3 = 1
2
(43𝛽2 − 102𝛽 + 55) − 1

2

√
1057 − 4212𝛽 + 5870𝛽2 − 3396𝛽3 + 697𝛽4.

It can be checked that K3 < I(𝛽). ■
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Proof of Proposition 6.

(i) Upon simplification, the sign of the difference xW − x is the same as that of 8(16 − 11𝛽)(1 − 𝛽)3 + 81𝛾2 − 18𝛾(1 −
𝛽)(11 − 9𝛽), which is strictly positive for 9𝛾 > 18(1 + 𝛽).

Likewise, it may be easily verified that the sign of xW − x is the same as that of 9𝛾(3𝛽 − 2) − 2(1 − 𝛽)(23𝛽 − 11 −
11𝛽2). This expression is strictly positive if both 𝛽 >

2
3
and 9𝛾 > 18(1 + 𝛽), so that xW > x. Instead, if either 𝛽 = 2

3
, or

𝛽 <
2
3
and 9𝛾 >

2(1−𝛽)(23𝛽−11−11𝛽2)
(3𝛽−2) , then xW < x.

(ii) As for total effective cost reductions, straightforward computations establish that (1 + 𝛽)x + (1 − 𝛽)x − (1 +
𝛽)xW

1
− (1 − 𝛽)xW < 0 if−9(1 + 𝛽)𝛾2 − 2(1 − 𝛽)(−15 + 8𝛽 + 3𝛽2)𝛾 + 8(2𝛽 − 3)(1 − 𝛽)3 < 0, which holds for any 𝛽 ∈

[0,1] and 9𝛾 > Z1. ■

Proof of Proposition 7.

(i) Wehave that

W(xa, xa) −W(xs, xs) =
4(𝛾 − 2(1 − 𝛽)2)(a − c)2𝛾

9𝛾2 − 2𝛾(11𝛽2 − 18𝛽 + 11) + 8(1 − 𝛽)2
− 4

(a − c)2𝛾
(9𝛾 − 4)

= 16(a − c)2𝛽2𝛾2

(9𝛾 − 4)(9𝛾2 − 2𝛾
(
11𝛽2 − 18𝛽 + 11

)
+ 8(1 − 𝛽)2)

>0.

(ii) The differenceW(xa, xa) −WJ is given by

4
(
𝛾 − 2(1 − 𝛽)2

)
(a − c)2𝛾

9𝛾2 − 2𝛾
(
11𝛽2 − 18𝛽 + 11

)
+ 8(1 − 𝛽)2

− 4
(9𝛾 − 2)(a − c)2𝛾

(9𝛾 − 4)2

so thatW(xa, xa) −WJ > 0 if 16(1 − 𝛽)2 + 18𝛾2(1 − 2𝛽2) − 4𝛾(1 − 𝛽)(11 − 7𝛽) > 0, which holds if either 𝛽 <
1
2

√
2 and

9𝛾 < Z2, or 𝛽 ≥
1
2

√
2 provided that 9𝛾 > 18(1 + 𝛽). ■
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